刘海东 (Haidong Liu)
系别:数学系
职称:副教授,硕士研究生导师
邮箱:liuhd35[at]mail[dot]sysu[dot]edu[dot]cn
地址:广东省广州市海珠区必赢体育官网登录南校区,震寰堂A202
研究方向:代数几何,双有理几何
教育背景 (Education)
2004.9-2009.7 北京大学中国语言文学系,学士 (B.S. Chinese Language and Literature, Peking University)
2009.9-2012.7 北京大学必赢唯一官方网站,硕士 (M.S. Mathematical Sciences, Peking University)
2014.10-2018.9 日本京都大学数学系,博士 (Ph.D. Mathematical Sciences, Kyoto University)
工作经历(Working experience)
2018.10-2019.7 京都大学数学系,博士后 (Research Associate, Kyoto University)
2019.9-2021.8 北京大学国际数学研究中心,金光助理教授 (Jinguang Assistant Professor, BICMR)
2021.9- 必赢唯一官方网站,副教授 (Associate Professor, Sun Yat-sen University)
教学相关(Teaching)
2019 秋 线性代数 北京大学 生化农医类 (Linear Algebra C)
2022 春 代数学 必赢体育官网登录 数学类 (Abstract Algebra)
2022 秋 线性代数 必赢体育官网登录 遥感科学与技术类,电子与通信工程类 (Linear Algebra B)
2023 春 代数学 必赢体育官网登录 数学类 (Abstract Algebra)
2024 春 代数学 必赢体育官网登录 数学类 (Abstract Algebra)
2024 秋 几何与代数 I 必赢体育官网登录 数学类 (Geometry & Algebra I)
个人主页(Homepages)
https://sites.google.com/view/liuhaidong
https://www.researchgate.net/profile/Liu-Haidong
个人和科研奖励(Grants and Fundings)
2019-2021 博士后国际交流引进计划
2021-2022 国家自然青年基金(主持)
2021-2024 必赢体育官网登录百人计划启动项目(主持)
科研论文(Publications)
[1] Angehrn-Siu type effective base point freeness for quasi-log canonical pairs, Kyoto J. Math. 59 (2019), no. 2, 455-470;
[2] Some remarks on log surfaces, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 10, 115-119;
[3] (with Osamu Fujino) On normalization of quasi-log canonical pairs, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 10, 97-101;
[4] (with Osamu Fujino) Quasi-log canonical pairs are Du Bois, J. Algebraic Geom. 31 (2022), no. 1, 105-112;
[5] (with Osamu Fujino) Fujita-type freeness for quasi-log canonical curves and surfaces, Kyoto J. Math. 60 (2020), no. 4, 1453-1467;
[6] (with Osamu Fujino and Taro Fujisawa) Fundamental properties of basic slc-trivial fibrations II, Publ. Res. Inst. Math. Sci. 58 (2022), no. 3, 527-549;
[7] (with Osamu Fujino) On the log canonical ring of projective plt pairs with the Kodaira dimension two, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 4, 1775-1789;
[8] On the log canonical ring with Kodaira dimension two, Internat. J. Math. 31 (2020), no. 14, 2050121;
[9] (with Chen Jiang) Boundedness of log pluricanonical representations of log Calabi-Yau pairs in dimension 2, Algebra & Number Theory 15 (2021), no. 2, 545-567;
[10] (with Roberto Svaldi) Rational curves and strictly nef divisors on Calabi-Yau threefolds, Doc. Math. 27 (2022), 1581-1604;
[11] (with Shin-ichi Matsumura) Strictly nef divisors on K-trivial fourfolds, Math. Ann. 387 (2023), no. 1-2, 985-1008;
[12] On a numerical criterion for Fano fourfolds, Math. Res. Lett. 31 (2024), no. 4, 1133-1151;
[13] (with Masataka Iwai and Chen Jiang) Miyaoka type inequality for terminal threefolds with nef anti-canonical divisors, to appear in Sci. China Math. ;
[14] (with Jie Liu) Kawamata-Miyaoka type inequality for Q-Fano varieties with canonical singularities, to appear in J. Reine Angew. Math. (Crelle's Journal);
[15] (with Jie Liu) Kawamata-Miyaoka type inequality for Q-Fano varieties with canonical singularities II: terminal Q-Fano threefolds, to appear in Épijournal Géom. Algébrique.
预印稿(Preprints)
[1] Fujita-type freeness for quasi-log canonical three-folds, arXiv:1902.08581;
[2] Remarks on very basic slc-trivial fibrations, arXiv:2004.12351;
[3] On the existence of rational curves on projective hyperkahler fourfolds, arXiv:2111.04270v3;
[4] On the log version of Serrano's conjecture, arXiv:2302.06209.
杂文和其他(Others)
[1] 从文学到数学:一个青年数学家的读书故事,数学文化 12 (2021), no. 2, 115-119.