学术报告(胡飞 2024.10.16)

An upper bound for polynomial volume growth or Gelfand–Kirillov dimension of automorphisms of zero entropy

发布人:姚璐 发布日期:2024-09-27
主题
An upper bound for polynomial volume growth or Gelfand–Kirillov dimension of automorphisms of zero entropy
活动时间
-
活动地址
腾讯会议 341 499 252
主讲人
胡飞 副教授(南京大学)
主持人
刘海东 副教授

Abstract: Let X be a smooth complex projective variety of dimension d and f an automorphism of X.

Suppose that the pullback f^* of f on the real Néron–Severi space N^1(X)_R is unipotent and denote the index of the eigenvalue 1 by k+1.

We prove an upper bound for the polynomial volume growth plov(f) of f, or equivalently, for the Gelfand–Kirillov dimension of the twisted homogeneous coordinate ring associated with (X, f), as follows: 

                                                                plov(f) \leq (k/2 + 1)d.

Combining with the inequality k \leq 2(d-1) due to Dinh–Lin–Oguiso–Zhang, we obtain an optimal inequality that

                                                                   plov(f) \leq d^2,

which affirmatively answers questions of Cantat–Paris-Romaskevich and Lin–Oguiso–Zhang.

This is joint work with Chen Jiang.