学术报告(苏治铜 2.28)

Conformal Embeddings via Heat Kernel(I)

发布人:杨晓静 发布日期:2023-02-21
主题
Conformal Embeddings via Heat Kernel(I)
活动时间
-
活动地址
新数学楼 415室
主讲人
苏治铜 博士后 必赢体育官网登录
主持人
黄显涛

Abstract
In this talk, we will introduce some embedding theorems in Riemannian geometry and construct a family of canonical conformal embeddings. More precisely, for any n-dimensional compact Riemannian manifold M with smooth metric g, by using the heat kernel embedding introduced in B´erard-Besson-Gallot’94, we construct a family of canonical conformal embeddings Ct,k: M → Rq(t),with t > 0 sufficiently small, q(t) ≫ t- n2 , and k as a function of O(tl) in proper sense. This is done by using only intrinsic properties of the manifold, and by finding all the conformal embeddings to overcome the differences from the isometric embeddings introduced in Wang-Zhu’15.