学术报告(曾铁勇 6.28)
Blind Image Deblurring: Past, Current and Future
Blind image deblurring is a challenging task in imaging science where we need to estimate the latent image and blur kernel simultaneously. To get a stable and reasonable deblurred image, proper prior knowledge of the latent image and the blur kernel is urgently required. In this talk, we address several of our recent attempts related to image deblurring. Indeed, different from the recent works on the statistical observations of the difference between the blurred image and the clean one, we first report the surface-aware strategy arising from the intrinsic geometrical consideration. This approach facilitates the blur kernel estimation due to the preserved sharp edges in the intermediate latent image. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on deblurring the text and natural images. Moreover, we discuss the Quaternion-based method for color image restoration. After that, we extend the quaternion approach for blind image deblurring and discuss the pixel screening correction method.