学术报告(郭紫华 1.6)
On the well-posedness of the 3D incompressible Euler equation and inviscid limit of the Navier-Stokes equation
发布人:肖怡霏
发布日期:2021-12-29
主题
On the well-posedness of the 3D incompressible Euler equation and inviscid limit of the Navier-Stokes equation
活动时间
-
活动地址
腾讯会议 会议ID: 966 968 538
主讲人
郭紫华 副教授 澳大利亚Monash University,
主持人
宋亮
We will talk about the local well-posedness of the 3D incompressible Euler equation in the critical spaces. In particular, we will prove local well-posedness (existence, uniqueness and continuous dependence) in the critical Triebel-Lizorkin space. The proof relies on some harmonic analysis technique and Bona-Smith method. The method can be applied to the Navier-Stokes equation and prove well-posedness uniformly with respect to the viscous parameter. This enables us to study the inviscid limit of the Navier-Stokes equation.