学术报告(张诗卓 1.6)

Categorical Torelli theorem for Gushel-Mukai

发布人:杨晓静 发布日期:2020-12-24
主题
Categorical Torelli theorem for Gushel-Mukai
活动时间
-
活动地址
必赢唯一官方网站415
主讲人
张诗卓 爱丁堡大学数学系 博士后
主持人
胡晓文

A conjecture of Kuznetsov-Perry  states that the equivalence of the Kuznetsov components of ordinary Gushel-Mukai threefolds implies they are birational. We show that the Bridgeland moduli space of -1 class stable objects in the Kuznetsov components is either minimal model of Fano surface of conics or the moduli space of semistable torsion free sheaves M_G(2,1,5). As a result, we prove the Kuznetsov-Perry's conjecture for general Gushel-Mukai threefolds.
库兹涅佐夫-佩里的一个猜想指出,普通古谢尔-向井三维簇的库兹涅佐夫分支的等价意味着它们是双有理等价的。 我们证明了库兹涅佐夫分支中(-1)类稳定对象的布里奇兰德模空间是圆锥曲线的法诺曲面的极小模型或半稳定无扭层的模空间。 结果,我们证明了一般古谢尔-向井三维簇的库兹涅佐夫-佩里猜想。