学术报告(陈洛南 11.27)

Deep-joint-learning analysis of scRNA-seq and scATAC-seq data

发布人:杨晓静 发布日期:2020-11-24
主题
Deep-joint-learning analysis of scRNA-seq and scATAC-seq data
活动时间
-
活动地址
平台:腾讯会议 收听账号及密码:574 965 722
主讲人
陈洛南研究员 中科院生化细胞所
主持人
张家军

Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space, (ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for understanding transcriptional regulatory mechanisms.